1 resultado para respiratory chain enzymes

em ABACUS. Repositorio de Producción Científica - Universidad Europea


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We recently generated a knock-in mouse model (PYGM p.R50X/p.R50X) of McArdle disease (myophosphorylase deficiency). One mechanistic approach to unveil the molecular alterations caused by myophosphorylase deficiency, which is arguably the paradigm of 'exercise intolerance', is to compare the skeletal-muscle tissue of McArdle, heterozygous, and healthy (wild type (wt)) mice. We analyzed in quadriceps muscle of p.R50X/p.R50X (n=4), p.R50X/wt (n=6) and wt/wt mice (n=5) (all male, 8 wk-old) molecular markers of energy-sensing pathways, oxidative phosphorylation (OXPHOS) and autophagy/proteasome systems, oxidative damage and sarcoplamic reticulum (SR) Ca handling. We found a significant group effect for total AMPK (tAMPK) and ratio of phosphorylated (pAMPK)/tAMPK (P=0.012 and 0.033), with higher mean values in p.R50X/p.R50X mice vs. the other two groups. The absence of massive accumulation of ubiquitinated proteins, autophagosomes or lysosomes in p.R50X/p.R50X mice suggested no major alterations in autophagy/proteasome systems. Citrate synthase activity was lower in p.R50X/p.R50X mice vs. the other two groups (P=0.036) but no statistical effect existed for respiratory chain complexes. We found higher levels of 4-hydroxy-2-nonenal-modified proteins in p.R50X/p.R50X and p.R50X/wt mice compared with the wt/wt group (P=0.011). Sarco(endo)plasmic reticulum ATPase 1 (SERCA1) levels detected at 110kDa tended to be higher in p.R50X/p.R50X and p.R50X/wt mice compared with wt/wt animals (P=0.076), but their enzyme activity was normal. We also found an accumulation of phosphorylated SERCA1 in p.R50X/p.R50X animals. Myophosphorylase deficiency causes alterations in sensory energetic pathways together with some evidence of oxidative damage and alterations in Ca handling but with no major alterations in OXPHOS capacity or autophagy/ubiquitination pathways, which suggests that the muscle tissue of patients is likely to adapt overall favorably to exercise training interventions.